

Ensino Médio

1ª Fase 06 de maio de 2025

Dia Nacional da Matemática

NOME COMPLETO DO(A) ALUNO(A) -

INSTRUÇÕES:

P1

- 1. A duração da prova é de 2 horas e 30 minutos. Você só poderá deixar a sala 45 minutos após o início da prova. Ao terminar a prova, entregue-a juntamente com o cartão-resposta preenchido ao aplicador.
- 2. Não é permitido:
 - usar instrumentos de desenho, calculadoras ou qualquer fonte de consulta;
 - comunicar-se com outras pessoas, além do aplicador de provas;
 - usar quaisquer aparelhos eletrônicos (celulares, tablets, relógios com calculadora etc.).

O não cumprimento dessas regras resultará em sua desclassificação.

3. Esta prova contém 20 problemas. Os problemas têm pesos diferentes:

Problemas	Pontuação individual	Pontuação total
01 a 05	01	5
06 a 10	03	15

Problemas	Pontuação individual	Pontuação total
11 a 15	05	25
16 a 20	07	35

- 4. Cada problema tem cinco alternativas de resposta: (A), (B), (C), (D) e (E). Apenas uma das alternativas é correta.
- 5. Respostas incorretas, rasuradas ou com múltiplas opções assinaladas sofrerão uma penalidade correspondente à perda de 25% do valor atribuído ao problema. No cálculo da pontuação final, serão considerados tanto os pesos das questões quanto as eventuais penalizações aplicadas.
- 6. A fim de evitar pontuações negativas a nota final será acrescida em 20 pontos.
- 7. A pontuação final máxima da prova, levando em conta os pesos atribuídos às questões corretas e as penalidades por respostas erradas, equivale a 100 pontos.

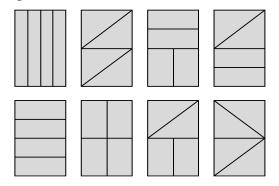
REALIZAÇÃO:

1ª Fase - Prova Objetiva

Problemas de 01 Ponto

Problema 01

Cada figura abaixo representa um retângulo que foi dividido em partes. Dizemos que um retângulo está dividido em **quartos** quando ele é repartido em quatro partes **iguais com respeito à área**, isto é, quando o retângulo é repartido em quatro partes de áreas iguais.



Em quantos dos retângulos apresentados é possível justificar que estão divididos em **quartos**?

A 4

B 5

G 6

D

B 8

Problema 02

Lucas estava dobrando uma folha de papel. A cada dobra, ele dobrava a folha ao meio, formando o dobro de camadas. Após fazer 1 dobra, a folha ficou com 2 camadas. Após 2 dobras, ficou com 4 camadas.

Se ele repetir esse processo, dobrando sempre ao meio, quantas camadas terá a folha após 5 dobras?

A 64

B 32

© 16

D 10

B 8

P1 Página 1

Em uma balança de dois pratos, colocaram-se duas bolas brancas e uma bola cinza de um lado, e uma bola branca e três bolas cinza do outro. A balança está em equilíbrio, como mostra a figura.

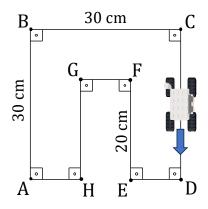
Sabendo que todas as bolas brancas têm o mesmo peso, e todas as bolas cinzas também têm o mesmo peso entre si, qual é a relação entre os pesos da bola branca (B) e da bola cinza (C)?

- $\mathbf{A} \mathbf{B} = \mathbf{C}$
- \mathbf{B} C = 2B
- \mathbf{G} B = 2C
- \mathbf{D} B = 3C
- B = C + 1

Problema 04

A professora de Robótica está testando um protótipo de carrinho que se movimenta de acordo com a seguinte programação:

O carrinho parte do ponto A, deslocando-se em linha reta 30 cm até o ponto B. Em seguida, realiza uma rotação de 90 graus para a direita e percorre mais 30 cm até o ponto C. Ao chegar em C, faz uma nova curva de 90 graus para a direita e continua seu movimento em linha reta, realizando curvas de 90 graus nos pontos D, E, F, G e H, até finalmente retornar ao ponto A, conforme mostra a figura.



Qual foi a distância total percorrida pelo carrinho?

A 160

- **B** 150
- **C** 140
- **D** 130
- **B** 120

Problema 05

Pedro utiliza 2,5 kg de farinha de trigo para fazer 30 pães. No entanto, uma alteração na receita exige que a quantidade de farinha utilizada para produzir essa mesma quantidade de pães seja aumentada em 20%.

Com base nessa nova receita, quantos quilogramas de farinha Pedro deverá utilizar para produzir 36 pães?

- **A** 2,5 kg
- **B** 3,1 kg
- **G** 3,4 kg
- **D** 3,5 kg
- **B** 3,6 kg

Problemas de 03 Pontos

Problema 06

Júlia escreveu um número de dois algarismos. Artur inseriu um zero entre os dois algarismos desse número, formando um novo número de três algarismos.

Surpreendentemente, o novo número é exatamente igual a nove vezes o número original.

Qual foi o número escrito por Júlia?

- A 36
- **B** 40
- **C** 45
- **D** 54
- **1** 90

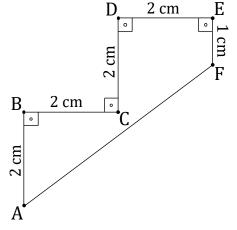
P1 Página 2

Determine a maior raiz real da equação $\frac{(5x+2)^2}{x^2} = 1$, considerando que $x \neq 0$.

- \mathbf{A} -2
- $\mathbf{B} \frac{1}{2}$
- $0 \frac{1}{3}$
- $0 \frac{1}{3}$
- **E** 2

Problema 08

Observe a figura abaixo, que representa uma sequência de segmentos de reta formando ângulos retos.



Qual é a medida, em centímetros, do segmento \overline{AF} ?

- **A** 4,0
- **B** 4,5
- **©** 5,0
- **D** 5,5
- **B** 6,0

Problema 09

Um robô danificado, chamado R-2, só consegue utilizar os algarismos 1, 2, 3, 4 e 5. Ainda assim, ele consegue escrever números de 5 algarismos.

Quantos desses números de 5 algarismos ele pode formar contendo exatamente dois algarismos 3, que estejam separados por exatamente um algarismo par (2 ou 4)?

- **A** 48
- **B** 60

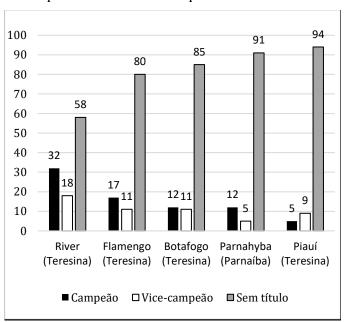
- **6**4
- **D** 96
- **B** 128

Problema 10

O gráfico apresenta informações sobre cinco clubes de futebol do Estado do Piauí, referentes à participação deles na primeira divisão do campeonato estadual, até o ano de 2024.

O gráfico também indica os resultados obtidos por esses clubes em cada edição do campeonato, com as seguintes considerações:

- considera-se que um clube chegou à final se foi campeão ou vice-campeão;
- quando um clube não chega à final ou não participa de determinada edição, dizemos que ficou sem título naquele ano.



Disponível em: www.campeoesdofutebol.com.br/piaui.html

Com base nas informações do gráfico e nas considerações acima, quantos campeonatos estaduais da primeira divisão foram disputados até o ano de 2024?

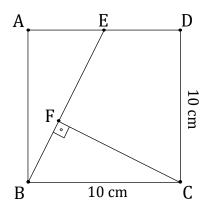
- **A** 132
- **B** 108
- **G** 78
- **D** 54
- **B** 50

ने

Problemas de 05 Pontos

Problema 11

O quadrado ABCD de lado 10 cm foi dividido em dois triângulos retângulos e um quadrilátero.



Sendo E o ponto médio do lado AD, a área do quadrilátero CDEF, em cm², equivale a:

- **A** $10\sqrt{5}$.
- **B** $20\sqrt{5}$.
- **G** 45.
- **D** 55.
- **ⓑ** $25\sqrt{5}$.

Problema 12

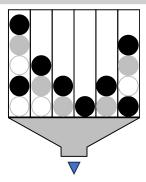
Cinco objetos com pesos inteiros e distintos foram colocados em uma caixa. A média aritmética dos pesos é 8 kg.

Sabendo que o objeto mais pesado pesa 14 kg, qual é o maior valor possível que pode ter o objeto mais leve?

- **A** 5
- **B** 4
- **C** 2
- **D** 1
- **B** 0

Problema 13

Uma máquina (figura) possui 6 compartimentos, cada um com algumas bolas empilhadas verticalmente (a de baixo sai primeiro). Cada bola é preta, branca ou cinza.



Ao apertar um botão, a máquina escolhe aleatoriamente um compartimento e libera a bola mais inferior disponível.

Qual é o menor número de toques no botão que garante que uma bola preta caia, independentemente da ordem aleatória de saídas?

- **A** 1
- **B** 2
- **G** 3
- **D** 5
- **B** 6

Problema 14

Um cadeado digital possui uma combinação secreta de três dígitos diferentes. As tentativas a seguir foram feitas para descobrir a combinação correta. Cada linha indica uma tentativa e a dica recebida após inseri-la.

Dicas:

- "Correto e bem-posicionado": o dígito está na combinação e na posição certa.
- "Correto, mas mal posicionado": o dígito está na combinação, mas na posição errada.
- "Incorreto": o dígito não faz parte da combinação.

Tentativa Resposta

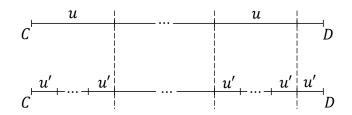
- (1) 1 2 7 Um dígito está correto e bem-posicionado
- (2) 2 9 1 Dois dígitos corretos, mas mal posicionados
- (3) 4 9 7 Dois dígitos corretos, mas mal posicionados
- (4) 8 1 7 Nada está correto

Com base nas tentativas acima, qual é a **única** combinação correta para abrir o cadeado?

- **A** 9 2 4
- **B** 2 9 4
- **C** 4 2 9

- **D** 9 3 4
- **B** 9 2 7

Considere os segmentos \overline{CD} , u e u', conforme ilustrado na imagem.



Veja que \overline{CD} não pode ser medido com uma quantidade inteira da unidade u, mas pode ser medido com u'. Isto é:

- 1. O segmento u pode ser dividido em m partes iguais de comprimento u', ou seja, $u = m \cdot u'$.
- 2. O segmento total \overline{CD} está subdividido por n pedaços iguais a u', ou seja, $\overline{CD} = n \cdot u'$.

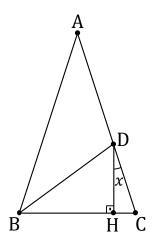
Com isso, é correto afirmar que:

- $\underline{A} \ \overline{CD} = \frac{n}{m} \cdot u$
- **B** $\overline{CD} = \frac{m}{n} \cdot u$
- $\overline{CD} = \frac{n}{m} \cdot u'$
- $\overline{CD} = \frac{m}{n} \cdot u'$

Problemas de 07 Pontos

Problema 16

Na figura plana a seguir, os triângulos ABC, BCD e DAB são isósceles de bases \overline{BC} , \overline{CD} e \overline{AB} , respectivamente. O ponto D pertence ao lado \overline{AC} , e o segmento \overline{DH} é perpendicular a \overline{BC} , caracterizando uma altura do triângulo BCD.



Sabendo disso, determine a medida do ângulo x.

A 9°

- B 18°
- C 27°
- **D** 36°
- **E** 45°

Problema 17

Sofia e Isabele jogam da seguinte forma: sorteia-se um número inteiro de 1 até 100, e depois elas se alternam dizendo divisores positivos desse número, sem repetições. Quem disser o último divisor disponível vence a rodada.

Por exemplo, se o número sorteado for 20 (que tem 6 divisores), e Sofia começar, Isabele vence, pois será a sexta a jogar.

Dado: Probabilidade é a chance de um evento acontecer. Ela pode ser calculada dividindo o número de casos favoráveis pelo número total de casos possíveis.

Sabendo que Sofia sempre começa as partidas, qual a chance de ela ganhar na primeira rodada?

- **A** 1/2
- **B** 1/5
- **(** 1/9
- **D** 1/10
- B 2/25

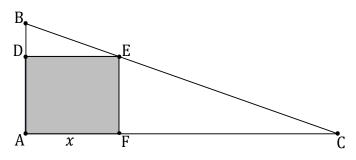
Problema 18

João ganhou um baú com moedas antigas numeradas de 1 a 6. Pode haver repetições, mas o baú contém pelo menos uma moeda de cada número. Ele percebe que, ao escolher qualquer par de moedas, sempre existe outro par de moedas no baú cuja soma é igual à do par escolhido.

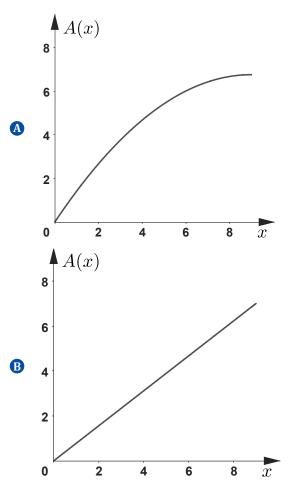
Qual é o menor número de moedas no baú que garante essa propriedade?

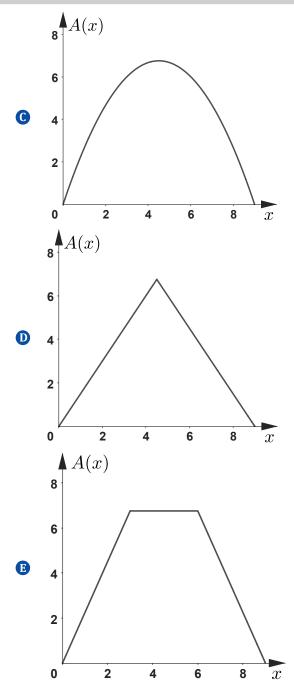
- **A** 9
- **B** 10
- **G** 12
- **D** 14
- **E** 15

Seja ABC um triângulo retângulo em A com \overline{AB} medindo 3 cm e \overline{AC} medindo 9 cm. Seja F um ponto pertencente ao lado \overline{AC} tal que \overline{AF} mede x, com $0 \le x \le 9$. Seja E um ponto pertencente ao lado \overline{BC} tal que \overline{EF} é paralelo ao lado \overline{AB} . Seja D um ponto pertencente ao lado \overline{AB} tal que \overline{DE} é paralelo ao lado \overline{AC} .



Qual é o gráfico que melhor representa a variação da área A(x) do quadrilátero ADEF em função da medida x?





Problema 20

Letícia vai pintar um muro dividido em 5 faixas horizontais, utilizando três cores: azul, vermelha e branca. Ela quer garantir que, em toda sequência de três faixas consecutivas, pelo menos uma delas esteja pintada de azul.

De quantas maneiras distintas Letícia pode pintar o muro, respeitando essa condição?

- **A** 54
- **B** 81
- **G** 96
- **D** 108
- **B** 123

P1 Página 6